Offre d'emploi M2 Internship - AI-based proactive scheduling for IoT data streams

Alternance
Informatique / Multimédia / Internet
Inria
Paris - Paris, France

Description du poste

Le descriptif de l’offre ci-dessous est en Anglais Type de contrat : Convention de stage Niveau de diplôme exigé : Bac + 4 ou équivalent Fonction : Stagiaire de la recherche Contexte et atouts du poste The MIMOVE team at Inria Paris undertakes research enabling next-generation distributed computing systems, from their conception and design to their runtime support.

MIMOVE has longstanding expertise in system interoperability & composition, resource allocation & system performance, and edge/fog computing.

In particular, the Internet of Things (IoT) has been one of our main focuses.

In our solutions, we have introduced system models, analyses, algorithms and protocols for capturing and managing the characteristics of the systems under study, as well as designed and developed related middleware tools and architectures.

Currently, we are focusing our distributed system research on distributed machine learning (ML) systems.

We situate distributed ML systems of interest in the resource/compute continuum edge-fog-cloud, combined with the IoT. The selected candidate will be supervised by Maroua Bahri (maroua.bahri@lip6.fr) and Nikolaos Georgantas (nikolaos.georgantas@inria.fr). Mission confiée Data Stream Processing and Analytics (DSPA) applications are widely used to process unbounded data streams generated online at different rates from multiple geographically distributed data sources, such as mobile IoT devices, sensors, etc.

These data streams require to be processed with low latency guarantees to extract valuable information in a timely manner via a series of continuous operators that constitute a DSPA application. The edge-fog-cloud continuum deployment approach enables benefits from both lower network delays and balanced bandwidth usage and resources along the continuum.

To this end, it requires deciding which part of the DSPA application to deploy on each of the layers in order to ensure the trade-off between the aforementioned advantages.

Several deployment solutions have been proposed in the literature that statically identify (near) optimal deployment schemes of DSPA applications which are typically long-running with varying workloads conditions over time [1,2].

To keep consistent Quality of Service (QoS) levels (e.g., latency, energy, network constraints) in the face of such varying conditions, the static deployment scheme may no longer be sufficient.

This requires a solution for triggering and calculating dynamically a new deployment scheme from the current deployed DSPA application in order to continuously ensure the required QoS levels [3,4].

Actually, dynamic deployment should be triggered at the right time: triggering it too late will violate the QoS requirements while triggering it too early will impose unnecessary load on the edge-fog-cloud resources and may result in a solution that diverges from the (near) optimal solution. Principales activités The internship focuses on enhancing DSPA applications through predictive methods for proactive triggering and optimized scheduling mechanisms across the edge-fog-cloud continuum to maintain consistent QoS requirements.

The proactive approaches will leverage AI-based methods over historical and real-time system and application metrics data to forecast operator and execution environment changes, enabling dynamic adaptation of operator scheduling [5]. Key objectives include: design of an intelligent triggering strategy to initiate dynamic redeployment, predictive scheduling for proactive adjustments to operator deployments, and validation of the proposed scheduling method to ensure QoS metrics.

This work aims to ensure optimal resource usage and performance in highly dynamic environments while maintaining a balance between proactive adjustments and minimal disruption to operations. References: [1] P.

Ntumba, N.

Georgantas, and V.

Christophides, “Efficient scheduling of streaming operators for IoT edge analytics” in FMEC, 2021. [2] P.

Ntumba, N.

Georgantas, V.

Christophides, “Scheduling Continuous Operators for IoT edge Analytics with Time Constraints”.

SMARTCOMP 2022: 78-85. [3] P.

Ntumba, N.

Georgantas, V.

Christophides.

“Adaptive Scheduling of Continuous Operators for IoT Edge Analytics”.

Future Gener.

Comput.

Syst.

158: 277-293 (2024). [4] H.

Arkian, “Resource management for data stream processing in geo-distributed environments,” Ph.D.

dissertation, Université de Rennes 1, 2021. [5] Z.

Zhong, M.

Xu, M.

A.

Rodriguez, C.

Xu, and R.

Buyya, “Machine learning-based orchestration of containers: A taxonomy and future directions,” ACM Computing Surveys (CSUR), 2022. Compétences Master level research internship (M2) or equivalent (stage de fin d'études ingénieur). Sound knowledge of machine learning, distributed systems, and edge-fog-cloud computing. Software development skills: Python and Java. Good level of spoken and written English which is our working language.

French is not required. Avantages Subsidized meals Partial reimbursement of public transport costs Leave: 7 weeks of annual leave + 10 extra days off due to RTT (statutory reduction in working hours) + possibility of exceptional leave (sick children, moving home, etc.) Possibility of teleworking and flexible organization of working hours Professional equipment available (videoconferencing, loan of computer equipment, etc.) Social, cultural and sports events and activities Access to vocational training Social security coverage Informations générales Thème/Domaine : Systèmes distribués et intergiciels Système & réseaux (BAP E) Ville : Paris Centre Inria : Centre Inria de Paris Date de prise de fonction souhaitée : 2025-03-01 Durée de contrat : 6 mois Date limite pour postuler : 2026-02-15 Attention: Les candidatures doivent être déposées en ligne sur le site Inria.

Le traitement des candidatures adressées par d'autres canaux n'est pas garanti. Consignes pour postuler Sécurité défense : Ce poste est susceptible d’être affecté dans une zone à régime restrictif (ZRR), telle que définie dans le décret n°2011-1425 relatif à la protection du potentiel scientifique et technique de la nation (PPST).

L’autorisation d’accès à une zone est délivrée par le chef d’établissement, après avis ministériel favorable, tel que défini dans l’arrêté du 03 juillet 2012, relatif à la PPST.

Un avis ministériel défavorable pour un poste affecté dans une ZRR aurait pour conséquence l’annulation du recrutement. Politique de recrutement : Dans le cadre de sa politique diversité, tous les postes Inria sont accessibles aux personnes en situation de handicap. Contacts Équipe Inria : MIMOVE Recruteur : Georgantas Nikolaos / Nikolaos.Georgantas@inria.fr A propos d'Inria Inria est l’institut national de recherche dédié aux sciences et technologies du numérique.

Il emploie 2600 personnes.

Ses 215 équipes-projets agiles, en général communes avec des partenaires académiques, impliquent plus de 3900 scientifiques pour relever les défis du numérique, souvent à l’interface d’autres disciplines.

L’institut fait appel à de nombreux talents dans plus d’une quarantaine de métiers différents.

900 personnels d’appui à la recherche et à l’innovation contribuent à faire émerger et grandir des projets scientifiques ou entrepreneuriaux qui impactent le monde.

Inria travaille avec de nombreuses entreprises et a accompagné la création de plus de 200 start-up.

L'institut s'efforce ainsi de répondre aux enjeux de la transformation numérique de la science, de la société et de l'économie. Avantages:
• RTT
Durée
Non renseignée
Localisation
Paris - Paris, France
Niveau souhaité :
Secteur :
Informatique / Multimédia / Internet
Type de contrat :
Contrat d'apprentissage

Expérience requise :
Compétences requises :
Non renseigné
En savoir + sur l'employeur

Lire la suite
Partager cette offre :
Copier le lien

Ces offres pourraient aussi t'intéresser